已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N+),其中x1为正实数.(1)用xn表示xn+1;(2)求证:对一切正整数n,xn+1≤xn的充要条件是x1≥2;(3)若x1=4,记an=lg ,证明数列{an}成等比数列,并求数列{xn}的通项公式.
某班一天上午有4节课,每节都需要安排一名教师去上课,现从A,B,C,D,E,F,6名教师中安排4人分别上一节课,第一节课只能从A、B两人中安排一人,第四节课只能从A、C两人中安排一人,则不同的安排方案共有多少种?
某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这2个节目插入原节目单中,那么有多少种不同的插法?
甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有多少种?
在1到20这20个整数中,任取两个数相减,差大于10,共有几种取法?
已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问: (1)P可表示平面上多少个不同的点? (2)P可表示平面上多少个第二象限的点? (3)P可表示多少个不在直线y=x上的点?