先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证:+≥.证明:构造函数f(x)=(x-a1)2+(x-a2)2,f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8(+)≤0,∴+≥.(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;(2)参考上述解法,对你推广的结论加以证明.
已知抛物线 F : y 2 = 4 x
(1) △ A B C 的三个顶点在抛物线 F 上,记 △ A B C 的三边 A B 、 B C 、 C A 所在的直线的斜率分别为 k A B , k B C , k C A 若A的坐标在原点,求 k A B - k B C + k C A 的值; (2)请你给出一个以 P ( 2 , 1 ) 为顶点、其余各顶点均为抛物线 F 上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由
某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图)。现把半径为10cm的圆形蛋皮分成5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积(精确到0.01)
已知向量 a ⇀ = ( sin 2 x - 1 , cos x ) , b ⇀ = ( 1 , 2 cos x ) ,设函数 f ( x ) = a ⇀ · b ⇀ ,求函数 f ( x ) 的最小正周期及 x ∈ 0 , π 2 时的最大值.
某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少? (12分)
在中,内角对边的边长分别是,且,(1)求角 (2)若边且的面积等于,求的值.(12分)