首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 1195

先阅读下列不等式的证法,再解决后面的问题:
已知a1a2∈R,a1a2=1,求证:.
证明:构造函数f(x)=(xa1)2+(xa2)2f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8()≤0,∴.
(1)已知a1a2,…,an∈R,a1a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

登录免费查看答案和解析

先阅读下列不等式的证法,再解决后面的问题:已知a1,a2∈R