设{an}是公比为正数的等比数列,a1=2,a3=a2+4,(1)求{an}的通项公式;(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
(本小题满分12分)中,角的对边分别为,已知点在直线上. (1)求角的大小; (2)若为锐角三角形且满足,求实数的最小值。
(本小题满分10分)已知函数,且当时,的最小值为2, (1)求的单调递增区间; (2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
)已知函数(). (1)当时,求函数的极值; (2)讨论函数的单调性; (3)设,若对恒成立,求实数的取值范围.
直三棱柱中,,,、分别为、的中点. (1)求证:; (2)求异面直线与所成角的余弦值.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,. (Ⅰ)求证:平面平面; (Ⅱ)若二面角为,设,试确定的值.