(本小题满分13分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4.(Ⅰ)求证:BC⊥平面BDE;(Ⅱ)试在平面CDE上确定点P,使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.
求由曲线y=,y=2-x,y=-x围成图形的面积.
已知函数对一切,都有,且时,,。 (1)求证:是奇函数。 (2)判断的单调性,并说明理由。 (3)求在上的最大值和最小值。
设为奇函数,为常数。 (1)求的值; (2)证明在区间(1,+∞)内单调递增; (3)若对于区间[3,4]上的每一个的值,不等式恒成立,求实数的取值范围。
已知函数在区间[0,1]上的最大值为3,求实数a的值。
对划艇运动员甲、乙二人在相同条件下进行6次测试,测得他们的速度的数据 如下:甲:27,38,30,37,35,31 乙:33,29,38,34,28,36 根据以上数据判断,谁更优秀。