设f(x)=|lg x|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2f,求证:a·b=1,>1.
(本小题满分12分)某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:
(Ⅰ)分别求出x,n,y的值; (Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.
(本小题满分16分)在直角坐标平面中,的两个顶点为,平面内两点同时满足:为的重心;到三点的距离相等;直线的倾斜角为. (1)求证:顶点在定椭圆上,并求椭圆的方程; (2)设都在曲线上,点,直线都过点并且相互垂直,求四边形的面积的最大值和最小值.
(本小题满分16分) (1)求右焦点坐标是,且经过点的椭圆的标准方程. (2)已知椭圆,设斜率为的直线交椭圆于两点,的中点为,证明:当直线平行移动时,动点在一条过原点的定直线上. (3)利用(2)中所揭示的椭圆几何性质,用作图方法找出图中的定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.
(本小题满分15分)学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图:航天器运行(按顺时针方向)的轨迹方程为 ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为对称轴、为顶点的抛物线的实线部分,降落点为.观测点,同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程; (2)试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为多少时,应向航天器发出变轨指令?
(本小题满分15分)如图,在四棱柱中,已知平面, 且. (1)求证:; (2)在棱BC上取一点E,使得∥平面,求的值.