设 a 为实数,函数 f x = e x - 2 x + 2 a , x ∈ R 。 (Ⅰ)求 f x 的单调区间与极值; (Ⅱ)求证:当 a > ln 2 - 1 且 x > 0 时, e x > x 2 - 2 a x + 1 。
(本小题满分14分)已知椭圆的左,右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设、两点的横坐标分别为、,证明:;(3)设与(其中为坐标原点)的面积分别为与,且,求的取值范围.
(本小题满分14分)等比数列的各项均为正数,成等差数列,且.(1)求数列的通项公式;(2)设,求数列的前项和.
(本小题满分14分)如图5所示,在三棱锥中,,平面平面,于点, ,,.(1)证明△为直角三角形;(2)求直线与平面所成角的正弦值
.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求的值;(2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为,求随机变量的分布列和均值(数学期望).
本小题满分12分)已知函数.(1)求的值;(2)设,若,求的值.