设 a 为实数,函数 f x = e x - 2 x + 2 a , x ∈ R 。 (Ⅰ)求 f x 的单调区间与极值; (Ⅱ)求证:当 a > ln 2 - 1 且 x > 0 时, e x > x 2 - 2 a x + 1 。
(12分)已知一列非零向量满足:,. (1)求证:为等比数列; (2)求向量与的夹角; (3)设,记,设点为,则当为何值时有最小值,并求此最小值.
(12分)已知向量,设,当时,不等式恒成立.求实数的范围.
(13分)已知函数的图象在轴右侧的第一个最值点(最高点或最低点)为,与轴在原点左侧的第一个交点为N. (1)求函数解析式; (2)若的图象在M,N之间与轴有交点,解不等式.
(13分)在△ABC中,A,B,C所对的边的长分别为,设满足条件和,求A和.
(13分)求函数的值域,最小正周期及单调递增区间.