甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84乙 92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据.(2)现要从中选派一人参加数学竞赛,从稳定性的角度考虑,你认为选派哪位学生参加合适?请说明理由.
正项数列的前n项和为,且. (Ⅰ)证明数列为等差数列并求其通项公式; (Ⅱ)设,数列的前项和为,证明:
解关于的不等式
如图,已知矩形所在平面外一点,平面,分别是的中点,. (1)求证:平面 (2)若,求直线与平面所成角的正弦值.
已知中,角A,B,C,所对的边分别是,且; (1)求 (2)若,求面积的最大值.
(本小题12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.