已知函数f(x)=ln1+x1-x. (Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程; (Ⅱ)求证:当x∈(0,1)时,f(x)>2(x+x33); (Ⅲ)设实数k使得f(x)>k(x+x33)对x∈(0,1)恒成立,求k的最大值.
设命题和是方程的两个根,不等式对任意实数恒成立;命题Q:函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.
已知为抛物线上一动点,为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时,△的面积为.(1)求抛物线的标准方程;(2)记,若的值与点位置无关,则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
已知动点与两定点、连线的斜率之积为.(1)求动点的轨迹C的方程;(2)若过点的直线交轨迹于M、N两点,且轨迹上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线的方程.
直三棱柱中,,分别是 的中点,,为棱上的点. (1)证明:; (2)是否存在一点,使得平面与平面所成锐二面角的余弦值为? 若存在,说明点的位置,若不存在,说明理由.
已知双曲线的方程为: (1)求双曲线的离心率; (2)求与双曲线有公共的渐近线,且经过点()的双曲线的方程.