已知数列{an}中,a1=1,an+1= (n∈N*).(1)求数列{an}的通项an;(2)若数列{bn}满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示. (Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率; (Ⅲ)当时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.
已知函数,,且的最小正周期为. (Ⅰ)若,,求的值; (Ⅱ)求函数的单调增区间.
设无穷等比数列的公比为q,且,表示不超过实数的最大整数(如),记,数列的前项和为,数列的前项和为. (Ⅰ)若,求; (Ⅱ)若对于任意不超过的正整数n,都有,证明:. (Ⅲ)证明:()的充分必要条件为.
已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点. (Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围; (Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.
已知函数,其中是自然对数的底数,. (Ⅰ)求函数的单调区间; (Ⅱ)当时,试确定函数的零点个数,并说明理由.