已知函数,满足.(1)求常数c的值;(2)解关于的不等式.
(本小题满分14分)如图,在四棱锥E—ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:(1) AE∥平面BDF;(2) 平面BDF⊥平面BCE.
(本小题满分14分)如图,O为坐标原点,点A,B在⊙O上,且点A在第一象限,点,点C为⊙O与轴正半轴的交点,设∠COB=θ.(1) 求sin2θ的值;(2) 若,求点A的横坐标xA.
设,.(1)求的单调区间和最小值;(2)讨论与的大小关系;(3)求的取值范围,使得<对任意>0成立
:已知函数.(Ⅰ)若,令函数,求函数在上的极大值、极小值;(Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.
:等差数列的各项均为正数,其前项和为,满足,且.⑴求数列的通项公式;⑵设,求数列的最小值项.