过椭圆Γ:=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.(1)求椭圆Γ的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.
设函数,数列的通项满足. (1)求数列的通项公式;(2)判定数列{a n }的单调性.
数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负. (1)求数列的公差; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值.
在数列{an}中,a1=2,a17=66,通项公式是项数n的一次函数. (1)求数列{an}的通项公式; (2)88是否是数列{an}中的项.
已知关于x的方程x2-3x+a=0和x2-3x+b=0(a≠b)的四个根组成首项为的等差数列,求a+b的值.
判断下列函数的奇偶性 ①; ②; ③; ④。