设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}.(1)求数列{xn}的通项公式.(2)设{xn}的前n项和为Sn,求sinSn.
如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.(1)求证:A1C//平面AB1D;(2)求二面角B—AB1—D的正切值;(3)求点C到平面AB1D的距离.
设函数,其中(1)求的单调区间;(2)当时,证明不等式:;
(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少个?(2)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?(3)将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?
已知在的展开式中,第6项为常数项。(1)求;(2)求的项的系数;(3)求展开式中所有的有理项。
((本小题满分14分)已知椭圆的左、右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设点、的横坐标分别为、,证明:;(3)设与(其中为坐标原点)的面积分别为与,且,求 的取值范围.