(12分)设是奇函数,(a,b,c∈Z),且f(1)=2,f(2)<3,求a,b,c的值。
(本小题满分12分) 某项计算机考试按科目A、科目B依次进行,只有大拿感科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为,科目B每次考试合格的概率为,假设各次考试合格与否均互不影响. (1)求他不需要补考就可获得证书的概率; (2)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求随即变量的分布列和数学期望.
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD. (1)求证:EG面ABF; (2)若AF=AB,求二面角B—EF—D的余弦值.
(本小题满分l0分) 已知圆的圆心为,半径为。直线的参数方程为(为参数),且,点的直角坐标为,直线与圆交于两点,求的最小值。
(本小题满分14分) 已知函数,,满足,. (1)求,的值; (2)若各项为正的数列的前项和为,且有,设,求数列的前项和; (3)在(2)的条件下,证明:.
(本小题满分12分) 椭圆的左、右焦点分别为、,点,满足. (1)求椭圆的离心率; (2)设直线与椭圆相交于两点,若直线与圆相交于两点,且,求椭圆的方程.