节日期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段后得到如下图所示的频率分布直方图.(Ⅰ)此调查公司在采样中用到的是什么抽样方法?(Ⅱ)求这40辆小型车辆车速的众数和中位数的估计值.(Ⅲ)若从车速在的车辆中任抽取2辆,求抽出的2辆车中车速在的车辆数的分布列及数学期望.
已知函数 (1)求函数的最小正周期和最大值; (2)求函数单调递增区间
(本小题满分10分)选修4—5:不等式选讲 已知函数 (1)当时,求不等式的解集; (2)若的解集包含,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ. (Ⅰ)写出⊙C的直角坐标方程; (Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.
(本小题满分10分)选修4—1:几何证明选讲 如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F. (Ⅰ)求证:AB为圆的直径; (Ⅱ)若AC=BD,求证:AB=ED.
(本小题满分12分)设,曲线在点处的切线与直线垂直. (1)求的值; (2)若恒成立,求的取值范围; (3)求证:.