某种产品特约经销商根据以往当地的需求情况,得出如下该种产品日需求量的频率分布直方图.(1)求图中的值,并估计日需求量的众数;(2)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为件(),纯利润为元.(ⅰ)将表示为的函数;(ⅱ)根据直方图估计当天纯利润不少于元的概率.
如图,已知海岛到海岸公路的距离为50km,间的距离为100km,从到, 必须先坐船到上的某一点,船速为,再乘汽车到,车速为,记. (1)试将由到所用的时间表示为的函数; (2)问为多少时,由到所用的时间最少?
如图,已知椭圆的右顶点为,点在椭圆上(为椭圆 的离心率). (1)求椭圆的方程; (2)若直线和椭圆交于点(在第一象限内),且点也在椭圆上,,若与 共线,求实数的值 .
正方形所在的平面与三角形所在的平面交于,且平面. (1)求证:平面; (2)求证:平面平面.
在中,角所对的边分别为,,, 且. (1)求角的值; (2)若为锐角三角形,且,求的取值范围.
某体育馆拟用运动场的边角地建一个矩形的健身室(如图所示),是一个标出为的正方形地皮,扇形是运动场的一部分,其半径为,矩形就是拟建的健身室,其中分别在和上,在上,设矩形的面积为,. (I)请将表示为的函数,并指出当点在的何处时,该健身室的面积最大,最大面积是多少? (II)由上面函数建立的思想,试求的最大值.