已知椭圆E的中心在坐标原点,焦点在轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;,是过点且相互垂直的两条直线,交椭圆E于,两点,交椭圆E于,两点,,的中点分别为,.(1)求椭圆E的标准方程;(2)求直线的斜率的取值范围;(3)求证直线与直线的斜率乘积为定值.
设数列的前项和为 已知(I)设,证明数列是等比数列; (II)求数列的通项公式.
. (本小题满分10分)设的内角A、B、C所对的边分别为、b、c,已知(Ⅰ)求的周长;(Ⅱ)求的值.
(1)设x、y、zR,且x+y+z=1,求证x2+y2+z2≥;(2)设二次函数f (x)=ax2+bx+c(a>0),方程f (x)-x=0有两个实根x1,x2,且满足:0<x1<x2<,若x(0,x1)。求证:x<f (x)<x1
已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16。(1)求数列{an}的通项公式;(2)若数列{an}和数列{bn}满足等式:an=+++……+,(nN+),求数列{bn}的前n项和Sn。
直线l的方程为(a+1)x+y+2-a=0 (aR)。 (1)若l在两坐标轴上的截距相等,求a的值; (2)若l不经过第二象限,求实数a的取值范围。