如图所示,在四面体中,,,两两互相垂直,且.(1)求证:平面平面;(2)求二面角的大小;(3)若直线与平面所成的角为,求线段的长度.
已知函数对于任意的且满足.(1)求的值;(2)判断函数的奇偶性;(3)若函数在上是增函数,解不等式.
如图,已知底角为的等腰梯形,底边长为cm,腰长为cm,当一条垂直于底边(垂足为)的直线从左至右移动(与梯形有公共点)时,直线把梯形分成两部分,令.(1)求左边部分的面积关于的函数解析式;(2)作出的图象.
已知函数(1)判断函数的奇偶性,并加以证明;(2)用定义证明在上是减函数; (3)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).
设全集为R,集合,.(1)求;(2)已知,若,求实数的取值范围.
画出函数的图象,并根据图象写出函数的单调区间,以及在各单调区间上,函数是增函数还是减函数。