在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量+与共线?如果存在,求k的值;如果不存在,请说明理由.
已知函数的图像,并写出该函数的单调区间与值域。(1)利用绝对值及分段函数知识,将函数的解析式写成分段函数;(2)在给出的坐标系中画出的图象,并根据图象写出函数的单调区间和值域.
计算求值:(1) (2) 若, 求的值
(本小题满分12分)已知函数(I)若函数在区间上存在极值,求实数a的取值范围;(II)当时,不等式恒成立,求实数k的取值范围.(Ⅲ)求证:。
(本小题满分12分)已知函数,若存在恒成立,则称的一个“下界函数”.(I)如果函数的一个“下界函数”,求实数t的取值范围(II)设函数,试问函数F(x)是否存在零点?若存在,求出零点个数;若不存在,请说明理由.
(本小题满分12分)已知数列的前n项和为等差数列,又成等比数列.(I)求数列、的通项公式;(II)求数列的前n项和.