如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角QACD的余弦值为?若存在,求出的值;若不存在,请说明理由.
①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程; ②求垂直于直线x+3y-5="0," 且与点P(-1,0)的距离是的直线的方程.
如图所示,矩形中,⊥平面,,为上的点,且⊥平面. (1)求证:⊥平面; (2)求三棱锥的体积.
在如图所示的几何体中,四边形是正方形,⊥平面,∥,、、分别为、、的中点,且. (1)求证:平面⊥平面; (2)求三棱锥与四棱锥的体积之比.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示. (1)求出该几何体的体积; (2)若是的中点,求证:∥平面; (3)求证:平面⊥平面.
如图,在直角梯形中,,∥,,为线段的中点,将沿折起,使平面⊥平面,得到几何体. (1)若,分别为线段,的中点,求证:∥平面; (2)求证:⊥平面; (3)的值.