(本小题满分14分)已知曲线从C上一点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)。设x1=1,an=xn+1-xn,bn=yn-yn+1 ①求Q1,Q2的坐标 ;②求数列{an}的通项公式;③记数列{an·bn}的前n项和为Sn,求证:
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式. (Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100 天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
已知函数在处取得极值. (I)求实 数a和b.(Ⅱ)求f(x)的单调区间
进货原价为80元的商品400个,按90元一个售出时,可全部卖出.已知这种商品每个涨价一元,其销售数就减少20个,问售价应为多少时所获得利润最大?
已知集合,,且,求实数的取值范围。
求函数,的值域.