商场销售某种商品的经验表明,该商品每日的销售量 y (单位:千克)与销售价格 x (单位:元/千克)满足关系式 y = a x - 3 + 10 x - 6 2 ,其中 3 < x < 6 , a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求 a 的值; (2) 若商品的成品为3元/千克, 试确定销售价格 x 的值,使商场每日销售该商品所获得的利润最大
(本小题共14分)设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。 (Ⅰ)求椭圆M的方程; (Ⅱ)求证| AB | =; (Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C, D,求四边形ABCD面积的最小值。
(本小题满分12分) 已知一个圆截y轴所得的弦长为2,被x轴分成的两段弧长的比为3:1. (1)设圆心,求实数、满足的关系式; (2)当圆心到直线的距离最小时,求圆的方程.
如图,在四棱锥中,底面为菱形,, , ,为的中点,为的中点 (1)证明:直线; (2)求异面直线与所成角的大小; (3)求点到平面的距离.
某选手在电视抢答赛中答对每道题的概率都是,答错每道题的概率都是,答对一道题积1分,答错一道题积分,答完道题后的总积分记为. (1)答完2道题后,求同时满足且的概率; (2)答完5道题后,求同时满足且的概率;
(12分)设直线与圆交于A、B两点,O为坐标原点,已知A点的坐标为.(Ⅰ)当原点O到直线的距离为时,求直线方程;(Ⅱ)当时,求直线的方程。