设椭圆M:=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若=2 (其中O为坐标原点).(1)求椭圆M的方程;(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.
已知函数().(1)若,求函数的极值;(2)若,不等式恒成立,求实数的取值范围.
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.(1)求抛物线的方程;(2)过点作直线交抛物线于,两点,求证: .
已知离心率的椭圆一个焦点为.(1)求椭圆的方程;(2) 若斜率为1的直线交椭圆于两点,且,求直线方程.
已知函数.(1)求函数的单调区间;(2)若,求函数的值域.
不等式解集为,不等式解集为,不等式解集为.(1)求;(2)若“”是“”的充分条件,求实数的取值范围.