如图,在四棱锥中,底面是边长为的正方形,,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.
(本小题满分12分)对于函数, (1)求函数的定义域; (2)当为何值时,为奇函数; (3)写出(2)中函数的单调区间,并用定义给出证明.
(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量, (1)将利润表示为月产量的函数; (2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).
(本小题满分12分)已知函数, (1)为何值时,有两个零点且均比-1大; (2)求在上的最大值.
(本小题满分10分)已知集合,. (1)求; (2)已知集合,若,求实数的取值范围.
已知实数a≠0,函数 (1)若,求,的值; (2)若,求的值.