已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
已知().求: (1)若,求的值域,并写出的单调递增区间; (2)若,求的值域.
解不等式:
定义:对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”. (1)已知二次函数,试判断是否为定义域上的“局部奇函数”?若是,求出满足的的值;若不是,请说明理由; (2)若是定义在区间上的“局部奇函数”,求实数的取值范围; (3)若为定义域上的“局部奇函数”,求实数的取值范围.
已知:如图,等腰直角三角形的直角边,沿其中位线将平面折起,使平面⊥平面,得到四棱锥,设、、、的中点分别为、、、. (1)求证:、、、四点共面; (2)求证:平面平面; (3)求异面直线与所成的角.
如图,已知圆,点. (1)求圆心在直线上,经过点,且与圆相外切的圆的方程; (2)若过点的直线与圆交于两点,且圆弧恰为圆周长的,求直线的方程.