已知函数f(x)=aln(2x+1)+bx+1.(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a的值;(2)若b=,试讨论函数y=f(x)的单调性.
如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y 2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x 2+ y 2 4 =1(x<0)上的动点,求△PAB面积的取值范围.
已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
如图,已知多面体ABC-A 1B 1C 1,A 1A,B 1B,C 1C均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.
(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;
(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.
已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P( - 3 5 , - 4 5 ).
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)= 5 13 ,求cosβ的值.
已知 f x = x + 1 - ax - 1 .
(1)当 a = 1 时,求不等式 f x > 1 的解集;
(2)若 x ∈ 0 , 1 时不等式 f x > x 成立,求 a 的取值范围.