如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA.
(本题12分)已知数列{an}的前n项和,数列{bn}满足b1+3b2+…+(2n-1)bn=(2n―3)·2n+1,求:数列{anbn}的前n项和Tn。
(本题12分)如图,四棱柱ABCD—ABCD中,AD平面ABCD,底面ABCD是边长为1的正方形,侧棱AA=2.(1)求证:CD∥平面ABBA;(2)求直线BD与平面ACD所成角的正弦值;(3)求二面角D—AC一A的余弦值.
(本题12分)某种家电器每台的销售利润与该电器无故障使用时间T(单位:年)有关,若T≤1,则销售利润为0元,若1<T≤3,则销售利润为100元,若T>3,则销售利润为200元,设每台该种电台无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率为为P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的两个根,且P2=P3,(1)求P1,P2,P3的值;(2)记表示销售两台这种家用电器的销售利润总和,求的分布列;(3)求销售两台这种家用电器的销售利润总和的平均值。
(本题12分)如图,货轮每小时海里的速度向正东方航行,快艇按固定方向匀速直线航行,当货轮位于A1处时,快艇位于货轮的东偏南105°方向的B1处,此时两船相距30海里,当货轮航行30分钟到达A2处时,快艇航行到货轮的东偏南45°方向的B2处,此时两船相距海里。问快艇每小时航行多少海里?
(本小题满分12分)已知曲线C的极坐标方程是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。