(本小题满分12分)已知曲线C的极坐标方程是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。
平面内动点到定点的距离比它到轴的距离大。 (1)求动点的轨迹的方程; (2)已知点A(3,2), 求的最小值及此时P点的坐标.
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组,,第五组.按上述分组方法得到的频率分布直方图如图所示. (1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数; (2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
命题: “方程表示双曲线” ();命题:定义域为,若命题为真命题,为假命题,求实数的取值范围.
已知椭圆的离心率为,且过点 (1)求椭圆的标准方程: (2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若 ①求的最值: ②求证:四边形ABCD的面积为定值.
.已知圆:x2+y2-2x-2y-2=0. (1)若直线平分圆的周长,求原点O到直线的距离的最大值; (2)若圆平分圆的周长,圆心在直线y=2x上,求符合条件且半径最小的圆B的方程.