如图在四棱锥中,底面是边长为的正方形,侧面底面,且.(1)求证:面平面; (2)求二面角的余弦值.
(满分12分)已知a,b是实数,函数 和是的导函数,若在区间上恒成立,则称和在区间上单调性一致(1)设,若和在区间上单调性一致,求b的取值范围;(2)设且,若和在以a,b为端点的开区间上单调性一致,求|a―b|的最大值
.(满分12分)某射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150米处,这时命中记2分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分。已知射手在100米处击中目标的概率为,他的命中率与目标距离的平方成反比,且各次射击都是独立的。(1)求这名射手在射击比赛中命中目标的概率;(2)求这名射手在比赛中得分的数学期望。
(满分12分)某项实验,在100次实验中,成功率只有10%,进行技术改革后,又进行了100次试验。若要有97.5%以上的把握认为“技术改革效果明显”,实验的成功率最小应为多少?(要求:作出)(设
(满分12分) 已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求c的取值范围
(满分12分)、有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的条件下,第二次抽到次品的概率.