如图所示,E是⊙O内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切⊙O于G.求证:(1)△DFE∽△EFA;(2)EF=FG.
已知函数,且函数的图象相邻两条对称轴之间的距离为.(Ⅰ)求的值;(Ⅱ)若函数在区间上单调递增,求k的取值范围.
已知数列为方向向量的直线上,(I)求数列的通项公式;(II)求证:(其中e为自然对数的底数);(III)记求证:
已知为锐角,且,函数,数列的首项,.(1)求函数的表达式; (2)求证:;(3)求证:.
已知是△ABC的两个内角,(其中是互相垂直的单位向量),若。(1)试问是否为定值,若是定值,请求出,否则说明理由;(2)求的最大值,并判断此时三角形的形状。
(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC, AB="2," AD=, BC=,椭圆E以A,B为焦点且经过点D. (1)建立适当的直角坐标系,求椭圆E的方程; (2)若点Q满足:,问是否存在不平行AB,的直线与椭圆E交于M、N两点.且|MQ|=|NQ|.若存在,求直线的斜率的取值范围,若不存在,请说明理由.