(本小题满分12分)某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望.
(12分)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 . (1)若N为线段PB的中点,求证:EN⊥平面PDB; (2)求该几何体的体积;
如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD;
已知三次函数=,、为实数,=1, 曲线y=在点(1,)处切线的斜率为-6。 (1)求函数的解析式; (2)求函数在(-2,2)上的最大值
(本小题满分12分)对某班级50名同学一年来参加社会实践的次数进行的调查 统计,得到如下频率分布表:
根据上表信息解答以下问题: