在直角坐标系xOy中,椭圆C的参数方程为 (φ为参数,a>b>0),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为ρsin(θ+)=m(m为非零数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,求椭圆C的离心率.
已知函数,. (1)求函数的单调增区间; (2)若,解不等式; (3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.
在四棱锥中,平面,,底面是梯形,,,. (1)求证:平面平面; (2)设为棱上一点,,试确定的值使得二面角为.
已知函数 (1)当时,求函数的值域; (2)设的内角,,的对应边分别为,,,且,,若向量 与向量共线,求,的值.
已知命题:,是方程的两个实根,且不等式对任意恒成立;命题:不等式有解,若命题为真,为假,求实数的取值范围.
已知椭圆上的点到左、右两焦点的距离之和为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (1)若轴上一点满足,求直线斜率的值; (2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.