某地电话拨号入网有两种收费方式,用户可以任选其一:(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
(1)根据这些数据在给出的坐标系中画出相应的点; (2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式; (3)①刹车后汽车行驶了多长距离才停止? ②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2,请比较与的大小,并解释比较结果的实际意义.
已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE. (1)求证:△ABD≌△CBE; (2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.
某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题: (1)此次调查抽取了多少用户的用水量数据? (2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数; (3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
A C ⊥ B C 如图,为测量江两岸码头 B 、 D 之间的距离,从山坡上高度为50米的 A 处测得码头 B 的俯角 ∠ E A B 为 15 ° ,码头D的俯角 ∠ E A D 为 45 ° ,点 C 在线段 B D 的延长线上,AC⊥BC,垂足为 C ,求码头 B 、 D 的距离(结果保留整数). D
如图,正比例函数y=kx(x≥0)与反比例函数的图象交于点 A(2,3), (1)求k,m的值; (2)写出正比例函数值大于反比例函数值时自变量x的取值范围.