如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
随着“节能减排、绿色出行”的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活.某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时,可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日的各项支出共2100元. (1)若某日共有x辆车未租出,则当日每辆车的日租金为元; (2)当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?
如图,直线与反比例函数的图象相交于点A(a,3),且与x轴相交于点B. (1)求该反比例函数的表达式; (2)若P为y轴上的点,且△AOP的面积是△AOB的面积的,请直接写出点P的坐标.
已知关于的一元二次方程. (1)求证:此方程总有两个实数根; (2)若为整数,当此方程的两个实数根都是整数时,求的值.
如图,甲船在港口P的南偏东60°方向,距港口30海里的A处,沿AP方向以每小时5海里的速度驶向港口P;乙船从港口P出发,沿南偏西45°方向驶离港口P.现两船同时出发,2小时后甲船到达B处,乙船到达C处,此时乙船恰好在甲船的正西方向,求乙船的航行距离(,,结果保留整数).
如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE逆时针旋转90°,设点E的对应点为F. (1)画出旋转后的三角形. (2)在(1)的条件下, ①求EF的长; ②求点E经过的路径弧EF的长.