己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点.(1)求椭圆C的方程;(2)设直线斜率为1,求线段的长;(3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.
有4张分别标有数字1,2,3,4的红色卡片和2张分别标有数字1,2的蓝色卡片,从这6张卡片中取出不同的4张卡片.(1)如果要求至少有1张蓝色卡片,那么有多少种不同的取法?(2)如果取出的4张卡片所标数字之和等于10,并将它们排成一行,那么有多少种不同的排法?
(本小题满分8分)某高级中学共有学生3000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.(Ⅰ)证明:为等比数列;(Ⅱ)设,求数列的前项和.
已知三棱锥P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小。