已知与成正比例,且当时,.(1)求与的函数关系式;(2)求当时的函数值.
(本小题满分8分)解下列方程:(1) (2)
(本小题满分12分)已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商以每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s 的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切?(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,直线EF与⊙O有两个公共点?
(本小题满分10分)已知,等腰Rt△ABC中,点O是斜边的中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且PM⊥AB,PN⊥BC,垂足分别为E、F.(1)如图1,当点P与点O重合时,OE、OF的数量和位置关系分别是____ __.(2)当△MPN移动到图2的位置时,(1)中的结论还成立吗?请说明理由. (3)如图3,等腰Rt△ABC的腰长为6,点P在AC的延长线上时,Rt△MPN的边 PM 与AB的延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且 EH: HO=2:5,则BE的长是多少?
(本小题满分10分)如图1,点C将线段AB分成两部分,如果AB : AC="AC" : BC,那么称点C为线段的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为S的图形分成两部分,这两部分的面积分别为S1: S2,如果S : S1= S1: S2,,那么称直线为该图形的黄金分割线.(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:在(1)中,过点C任作AE交AB于E,再过点D作,交 AC于点F,连接EF(如图3),则直线EF是△ABC的黄金分割线.请说明理由.(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作,交DC于点F,显然直线EF是ABCD的黄金分割线.请你再画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点(保留必要的辅助线).