如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s 的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切?(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,直线EF与⊙O有两个公共点?
解不等式组,并把解集在数轴上表示出来.
4 x - 2 ⩾ 3 x - 1 , ① x - 5 2 + 1 > x - 3 ⋅ ②
小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ∠ ACB 与 ∠ ECD 恰好为对顶角, ∠ ABC = ∠ CDE = 90 ° ,连接 BD , AB = BD ,点 F 是线段 CE 上一点.
探究发现:
(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD ⊥ DF .你认为此结论是否成立? .(填"是"或"否" )
拓展延伸:
(2)将(1)中的条件与结论互换,即: BD ⊥ DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 AB = 6 , CE = 9 ,求 AD 的长.
若 ΔABC 和 ΔAED 均为等腰三角形,且 ∠ BAC = ∠ EAD = 90 ° .
(1)如图(1),点 B 是 DE 的中点,判定四边形 BEAC 的形状,并说明理由;
(2)如图(2),若点 G 是 EC 的中点,连接 GB 并延长至点 F ,使 CF = CD .
求证:① EB = DC ,
② ∠ EBG = ∠ BFC .
中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以"茶和世界 共品共享"为主题的第一届国际茶日在中国召开.某茶店用4000元购进了 A 种茶叶若干盒,用8400元购进 B 种茶叶若干盒,所购 B 种茶叶比 A 种茶叶多10盒,且 B 种茶叶每盒进价是 A 种茶叶每盒进价的1.4倍.
(1) A , B 两种茶叶每盒进价分别为多少元?
(2)第一次所购茶叶全部售完后,第二次购进 A , B 两种茶叶共100盒(进价不变), A 种茶叶的售价是每盒300元, B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进 A , B 两种茶叶各多少盒?
为迎接2020年第35届全国青少年科技创新大赛,某学校举办了 A :机器人; B :航模; C :科幻绘画; D :信息学; E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)本次参加比赛的学生人数是 名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角 α 的度数;
(4)在 C 组最优秀的3名同学 ( 1 名男生2名女生)和 E 组最优秀的3名同学 ( 2 名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.