如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.
已知函数f(x)=ln-a+x(a>0).(Ⅰ)若=,求f(x)图像在x=1处的切线的方程;(Ⅱ)若的极大值和极小值分别为m,n,证明:.
已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·=1,||=1.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为.(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;(Ⅱ)求二面角D-EC-B的平面角的余弦值.
甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分最低为0分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.
设函数f(x)=-sin(2x-).(1)求函数f(x)的最大值和最小值;(2)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若sinB=2sinA,求△ABC的面积.