如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.
有4个不同的球,四个不同的盒子,把球全部放入盒内(结果用数字表示). (1)共有多少种放法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法?
已知抛物线,直线交抛物线于两点,且. (1)求抛物线的方程; (2)若点是抛物线上的动点,过点的抛物线的切线与直线交于点,问在轴上是否存在定点,使得?若存在,求出该定点,并求出的面积的最小值;若不存在,请说明理由.
已知函数. (1)求函数的极值点与极值; (2)设为的导函数,若对于任意,且,恒成立,求实数的取值范围.
如图,已知菱形,其边长为2,,绕着顺时针旋转得到,是的中点. (1)求证:平面; (2)求直线与平面所成角的正弦值.
已知数列为等差数列,,数列满足,且.(1)求通项公式;(2)设数列的前项和为,试比较与的大小.