如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(1)证明:平面EAC⊥平面PBD;(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.
已知函数部分图象如图所示。(1)求函数的解析式;(2)当时,求函数的值域。
选修4—5:不等式选讲已知函数,.(Ⅰ)当时,求不等式的解集;(Ⅱ)设,且当时,,求a的取值范围.
选修4—4:坐标系与参数方程坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
选修4-1:几何证明选讲如图所示,圆的两弦和交于点,∥,交的延长线于点,切圆于点.(1)求证:△∽△;(2)如果,求的长.
)已知函数(1)若直线过点,并且与曲线相切,求直线的方程;(2)设函数在上有且只有一个零点,求的取值范围。(其中为自然对数的底数)