已知数列{an}的前n项和Sn满足Sn+an+ n-1=2(n∈N*),设cn=2nan.(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.(2)按以下规律构造数列{bn},具体方法如下:b1=c1,b2=c2+c3,b3=c4+c5+c6+c7,…,第n项bn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn.
(本小题满分10分)选修4-5:不等式选讲: 已知函数. (Ⅰ)求不等式的解集; (Ⅱ)若关于的不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程: 以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为(为参数,),曲线的极坐标方程为. (Ⅰ)求曲线的直角坐标方程; (Ⅱ)设直线与曲线相交于、两点,当变化时,求的最小值.
(本小题满分10分)选修4-1:几何证明选讲: 如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相交于点,为上一点,且. (Ⅰ)求证:; (Ⅱ)若,求的长.
(本小题满分12分) 设函数 (1)当时,求函数的单调区间; (2)令<≤,其图像上任意一点处切线的斜率≤恒成立,求实数的取值范围; (3)当时,方程在区间内有唯一实数解,求实数的取值范围.
(本小题满分12分)椭圆:的离心率为,长轴端点与短轴端点间的距离为. (1)求椭圆的方程; (2)设过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.