已知数列{an}的前n项和Sn满足Sn+an+ n-1=2(n∈N*),设cn=2nan.(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.(2)按以下规律构造数列{bn},具体方法如下:b1=c1,b2=c2+c3,b3=c4+c5+c6+c7,…,第n项bn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn.
设A、B分别是直线和上的两个动点,并且,动点P满足,记动点P的轨迹为C,求轨迹C的方程.
如图,有一张长为8,宽为4的矩形纸片ABCD,按图示的方向进行折叠,使每次折叠后点B都落在AD边上,此时将B记为B′(图中EF为折痕,点F也可以落在边CD上).过B′作交EF于点T,求点T的轨迹方程.
在平面直角坐标系中,已知的两个顶点,且三边AC、BC、AB的长成等差数列,求顶点A的轨迹方程.
P为椭圆上一点,为它的一个焦点,求证:以为直径的圆与以长轴为直径的圆相切.
已知椭圆的对称轴是坐标轴,O为坐标原点,F是一个焦点,A是一个顶点,若椭圆的长轴长是6,且,求椭圆的方程.