已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;(2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合), 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
已知数列为等差数列,,其前和为,数列为等比数列,且对任意的恒成立. (1)求数列、的通项公式; (2)是否存在,使得成立,若存在,求出所有满足条件的;若不存在,说明理由.
如图,四棱锥P-ABCD中,底面为菱形,且,. (Ⅰ)求证:; (Ⅱ)若,求二面角的余弦值。
在△ABC中,分别为角A、B、C的对边,若=(,),,且. (1)求角A的度数; (2)当,且△ABC的面积时,求边的值和△ABC的面积。
选修4-5不等式证明选讲 已知函数,且满足的解集不是空集. (1)求实数的取值范围; (2)求的最小值.
选修4-4极坐标与参数方程 已知曲线的极坐标方程为,曲线(为参数). (1)求曲线的普通方程; (2)若点在曲线上运动,试求出到曲线的距离的最小值.