如图所示,四边形为直角梯形,,,为等边三角形,且平面平面,,为中点.(1)求证:;(2)求平面与平面所成的锐二面角的余弦值;(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.
函数=的定义域为,集合=,(1)求:集合; (2)若,求的取值范围.
计算:⑴ ;⑵.
已知函数(,),.(Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立;(Ⅱ)记,若在上单调递增,求实数的取值范围;
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。(Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。(Ⅱ)若的面积为,求向量的夹角;
已知为等比数列,是等差数列,(Ⅰ)求数列的通项公式及前项和;(2)设,,其中,试比较与的大小,并加以证明.