求满足下列条件的直线的方程。(1)经过两条直线2x-3y+10=0和3x+4y-2=0交点,且垂直于直线3x-2y+4=0;(2)经过两条直线2x+y-8=0和x-2y+1=0交点,且平行于直线4x-3y-7=0;
已知函数(1)若在区间上是增函数,求实数的取值范围; (2)若是的极值点,求在上的最大值;(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图象恰有3个交点?若存在,请求出实数的取值范围;若不存在,试说明理由。
(本小题12分)设是定义在上的函数,且对任意,当时,都有; (1)当时,比较的大小; (2)解不等式; (3)设且,求的取值范围。
设函数(a为实数).⑴若a<0,用函数单调性定义证明:在上是增函数;⑵若a=0,的图象与的图象关于直线y=x对称,求函数的解析式.
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式(ax-)(x+4)≤0的解集. (1)求A∩B; (2)若C⊆∁RA,求a的取值范围.
已知命题:方程在[-1,1]上有解;命题:只有一个实数满足不等式,若命题“p或q”是假命题,求实数a的取值范围.