盒中有大小形状相同的5个白球和2个黑球,求下列事件的概率:(1)任取一球,得到白球。(2)任取三球,恰有2个白球。(3)任取三球(分3次,每次放回后再取),恰有3个白球。
已知(1)求函数的最小值;(2)对一切恒成立,求实数的取值范围.
为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小?并求最小值.
已知实数满足,证明:.
已知都是实数,且.(1)求不等式的解集;(2)若对满足条件的所有实数都成立,求实数的取值范围.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上表补充完整(不用写计算过程);(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
(参考公式:,其中)