如图是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树状图加以分析说明.
已知函数,当时f(x)>0,时f(x)<0(1)求y=f(x)的解析式;(2)c为何值时,不等式的解集为R.
经市场调查,某种商品在过去50天的销售和价格均为销售时间t(天)的函数,且销售量近似地满足f (t) =" –" 2t + 200(1 ≤ t ≤ 50 , t ∈ N ),前30天价格为g (t) = t + 30 (1 ≤ t ≤ 30 , t ∈ N ),后20天价格为g (t) =" 45" (31 ≤ t ≤ 50 , t ∈ N ).(1)写出该种商品的日销售S与时间t的函数关系;(2)求日销售S的最大值.
佛山某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为,每件产品的售价与产量之间的关系式为.(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
已知函数f(x)的定义域为{x| x ≠ kπ,k ∈ Z},且对于定义域内的任何x、y,有f(x-y) = 成立,且f(a) = 1(a为正常数),当0 < x < 2a时,f(x) > 0.(I)判断f(x)奇偶性;(II)证明f(x)为周期函数;(III)求f(x)在[2a,3a] 上的最小值和最大值.