如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面;(2)若二面角为,求与平面所成角的正弦值.
已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.
选修4-5:不等式选讲:若关于的方程有实根(Ⅰ)求实数的取值集合(Ⅱ)若对于,不等式恒成立,求的取值范围
选修4-4:极坐标与参数方程:已知椭圆C的极坐标方程为,点为其左,右焦点,直线的参数方程为(为参数,).(Ⅰ)求直线和曲线C的普通方程;(Ⅱ)求点到直线的距离之和.
.选修4-1:几何证明选讲:如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,.(Ⅰ)求证:AC是△BDE的外接圆的切线;(Ⅱ)若,求EC的长.
已知函数,其中为实数. (1)当时,求曲线在点处的切线方程; (2)是否存在实数,使得对任意,恒成立?若不存在,请说明理由,若存在,求出的值并加以证明.