如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求椭圆C的方程;(2)求点P的坐标;(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.
在中,角所对的边分别为且满足(I)求角的大小;(II)求函数 的最大值,并求取得最大值时的大小.
(本小题满分15分)过曲线C:外的点A(1,0)作曲线C的切线恰有两条,(Ⅰ)求满足的等量关系;(Ⅱ)若存在,使成立,求的取值范围.
已知点(0,1),,直线、都是圆的切线(点不在轴上).(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由
(20) (本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.(Ⅰ) 求证:PA∥平面MDB;(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
(本小题满分14分)已知数列﹛﹜满足:.(Ⅰ)求数列﹛﹜的通项公式;(Ⅱ)设,求