若函数(为实常数).(1)当时,求函数在处的切线方程;(2)设.①求函数的单调区间;②若函数的定义域为,求函数的最小值.
已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5. (Ⅰ)求抛物线C的方程; (Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值; (Ⅲ)过A、B分别作抛物C的切线且交于点M,求与面积之和的最小值.
(本小题满分分) 已知函数.当时,函数取得极值. (I)求实数的值; (II)若时,方程有两个根,求实数的取值范围.
如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4. (Ⅰ)若F为DE的中点,求证:BE//平面ACF; (Ⅱ)求直线BE与平面ABCD所成角的正弦值
已知,点在曲线上且(Ⅰ)求证:数列为等差数列,并求数列的通项公式; (Ⅱ)设数列的前n项和为,若对于任意的,存在正整数t,使得恒成立,求最小正整数t的值
设递增等差数列的前项和为,已知,是和的等比中项, (I)求数列的通项公式 (II)求数列的前项和