设 A 是单位圆 x 2 + y 2 = 1 上任意一点, l 是过点 A 与 x 轴垂直的直线, D 是直线 l 与 x 轴的交点,点 M 在直线 l 上,且满足 D M = m D A ( m > 0 且 m ≠ 1 ) ,当点 A 在圆上运动时,记点 M 的轨迹为曲线 C . (1)求曲线 C 的方程,判断曲线 C 为何种圆锥曲线,并求其焦点坐标. (2)过原点斜率为 k 的直线交曲线 C 于 P , Q 两点,其中 P 在第一象限,且它在 y 轴上的射影为点 N ,直线 Q N 交曲线 C 于另一点 H ,是否存在 m ,使得对任意的 k > 0 ,都有 P Q ⊥ P H ?若存在,请说明理由。
(Ⅰ)已知:,,求的值;(Ⅱ)类比(Ⅰ)的过程与方法,将(Ⅰ)中已知条件中两个等式的左边进行适当改变,写出改变后的式子,并求的值.
已知向量,其中.设函数.(Ⅰ)求的解析式;(Ⅱ)若的最小值是,求的值.
如图,在平面直角坐标系中,以轴为始边作两个锐角、,它们的终边分别与单位圆相交于、两点.已知、的横坐标分别为,.(Ⅰ)求的值;(Ⅱ)求的值.
已知. (Ⅰ)求的夹角; (Ⅱ)求向量在上的投影.
已知函数,其中.(1)当时,求曲线在原点处的切线方程;(2)求的单调区间.