设 A 是单位圆 x 2 + y 2 = 1 上任意一点, l 是过点 A 与 x 轴垂直的直线, D 是直线 l 与 x 轴的交点,点 M 在直线 l 上,且满足 D M = m D A ( m > 0 且 m ≠ 1 ) ,当点 A 在圆上运动时,记点 M 的轨迹为曲线 C . (1)求曲线 C 的方程,判断曲线 C 为何种圆锥曲线,并求其焦点坐标. (2)过原点斜率为 k 的直线交曲线 C 于 P , Q 两点,其中 P 在第一象限,且它在 y 轴上的射影为点 N ,直线 Q N 交曲线 C 于另一点 H ,是否存在 m ,使得对任意的 k > 0 ,都有 P Q ⊥ P H ?若存在,请说明理由。
(本题满分12分 )已知数列的各项均为正数, 为其前项的和,且对于任意的,都有。 (1)求的值和数列的通项公式; (2)求数列的前项和。
(本小题满分10分)选修4-5:不等式选讲 已知函数. (1)当时,解不等式; (2)当时,恒成立,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为. (1)求圆C的极坐标方程; (2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|。
(本小题满分10分)选修4—1:几何证明选讲 如图所示, 为圆的切线, 为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.
(本小题满分12分)设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求p 的最小值. (3)证明不等式: