设函数 f ( x ) = a x n ( 1 - x ) + b ( x > 0 ) , n 为正整数, a , b 为常数,曲线 y = f ( x ) 在 ( 1 , f ( 1 ) ) 处的切线方程为 x + y = 1 . (1)求 a , b 的值;
(2)求函数 f ( x ) 的最大值;
(3)证明: f ( x ) < 1 n e .
已知二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3 (1)求n的值; (2)求展开式中项的系数 (3)计算式子的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于点A(-1,0)、B (3,0)两点,直线y=x-2与x轴交于点D.与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m. (1)求抛物线的解析式; (2)若PE=3EF,求m的值.
如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD (1)求k的值和点E的坐标; (2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
当﹣2≤x≤1时,二次函数有最大值4,求实数m取值的集合.
先化简,再求值:,其中a=,b=.