(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,. (Ⅰ)求证:平面平面; (Ⅱ)求直线与平面所成角的大小; (Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
某产品按行业生产标准分成个等级,等级系数依次为,其中为标准,为标准,产品的等级系数越大表明产品的质量越好,已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准. (Ⅰ)从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品, (1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率; (2)已知该厂生产一件该产品的利润y(单位:元)与产品的等级系数的关系式为:,从该厂生产的产品中任取一件,其利润记为,用这个样本的频率分布估计总体分布,将频率视为概率,求的分布列和数学期望.
在中,内角的对边分别为.已知. (Ⅰ)求的值; (Ⅱ)若为钝角,,求的取值范围.
(本题满分14分,第1小题6分,第2小题8分) 已知函数,x∈R,且f(x)的最大值为1. (1) 求m的值,并求f(x)的单调递增区间; (2) 在△ABC中,角A、B、C的对边a、b、c,若,且,试判断△ABC的形状.
(本题满分12分,第1小题6分,第2小题6分) 已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }. (1) 求A、B; (2) 若,求实数a的取值范围.